Research Labs

Search

  • Acharya Lab

    The Acharya lab studies how immune cells integrate signals from pathogens and their environment to produce effective immunity against pathogens while maintaining tolerance to self-derived antigens.

  • Allenspach Lab

    The Allenspach Lab focuses on translational work to understand immune dysregulation disorders – those with overlapping immunodeficiency and autoimmune features.

  • Beier Lab

    The Beier Lab uses genetic analysis in model systems as a means to understand human biology and disease, and identifies genes that contribute to human disease and developmental abnormalities.

  • Bennett Lab

    The Bennett lab at Seattle Children’s Research Institute investigates the contribution of post-zygotic mutations on human development and birth defects, with a focus on vascular malformations. We also study the impact of rapid diagnostic genomic sequencing in management of children in intensive care units.

  • Bjornson Lab

    The Bjornson laboratory’s research aims to improve the lives of children with cerebral palsy. We focus on gathering objective data around interventions in orthotics, gait training and power training that can dramatically enhance children’s balance, muscle strength, walking and general mobility in daily life.

  • Cherry Lab

    The Cherry Lab investigates how the visual system develops, and how genetic variations contribute to blindness and other visual disorders.

  • Christakis Lab

    The Christakis Lab studies how the early environment impacts childhood behavior and development, and develops strategies that help parents optimize their children’s social, cognitive and emotional development.

  • Craniofacial Outcomes Research and Epidemiology (CORE) Group

    The CORE group unites researchers around a shared vision: to collaborate on discoveries that advance our understanding of the causes of craniofacial conditions and to improve healthcare for children with conditions affecting the head and neck.

  • Cunningham Lab

    The Cunningham Lab investigates the fundamental mechanisms behind craniosynostosis and other craniofacial malformations.

  • Cystic Fibrosis Research

    From developing groundbreaking therapies to leading clinical trials, Seattle Children’s has been an international leader in cystic fibrosis (CF) research for more than 25 years.

  • Debley Lab

    The Debley Lab is engaged in an array of translational research investigating the role of the airway epithelium in childhood asthma.

  • Desai Lab

    Dr. Arti Desai’s research program focuses on developing and testing innovative health information technology solutions to optimize comprehensive, coordinated and equitable care for children with chronic conditions.

  • Diabetes Research

    Our researchers are leading national efforts to better understand the differences in development, clinical presentation and health outcomes in youth with diabetes. If you or a family member has diabetes, you may be eligible to take part in one of the many studies offered at Seattle Children’s.

  • DIPG Research Program

    Diffuse intrinsic pontine glioma (DIPG) and diffuse midline gliomas (DMG) are aggressive childhood cancers. The DIPG Research Program at Seattle Children’s focuses on development of new therapies for aggressive brain and central nervous system tumors through optimization of clinical care.

  • Emergency Medicine Research: Anaphylaxis and Epinephrine

    The focus of this research is anaphylaxis and the use of epinephrine auto-injectors.

  • Evans Lab

    The Evans lab investigates sleep and breathing in children born with craniofacial conditions, with the goal of improving outcomes in patients with conditions affecting the airway’s function.

  • Garrison Lab

    The Garrison Lab studies interactions between sleep, media use and physical activity, and their effect on health, behavior and development.

  • Grill Lab

    Our goal is to decipher signaling networks that affect neuron development and engineered behaviors. We focus on molecular players and cellular processes involved in neurodevelopmental disorders, neurodegenerative disease and opioid drug addiction.

  • Gumbiner Lab

    The Gumbiner Lab studies how tissues and organs are built from collections of individual cells, leading to discoveries about how animals and humans develop and how their tissues are maintained, repaired and regenerated throughout life.

  • Gustafson Lab

    Led by Dr. Heather Gustafson, EDIT Labs develops novel technology platforms that target and alter macrophage phenotypes.

  • Hahn Lab

    The Hahn Lab focuses on development and validation of assays that have important clinical applications for population screening, diagnosis and prognosis.

  • Heike Lab

    The Heike Lab conducts innovative research on questions related to craniofacial microsomia, 22q11.2 deletion syndrome and other craniofacial conditions.

  • Hing Studies

    Dr. Anne V. Hing investigates the genetic causes of craniofacial disorders and specializes in recruiting patients for studies.

  • Immune Dysregulation

    Research to improve the treatment for sepsis and asthma

  • Infectious Disease Research

    The Infectious Disease (ID) Research Program is dedicated to discovering better ways to diagnose, treat and prevent infectious diseases.

  • Inherited Defects in Immunity

    Seattle Children’s researchers are developing better ways to treat and cure pediatric autoimmune diseases such as multiple sclerosis and juvenile diabetes.

  • Innovation in Child Healthcare Delivery Lab

    Our lab uses a community-engaged approach to develop innovative ways to deliver healthcare. Our goal is to reduce socioeconomic and racial/ethnic disparities in child health and healthcare.

  • Jackson Lab

    The Jackson Lab studies the immune mechanisms underlying the development of systemic autoimmune diseases, focusing in particular on the role of B cells in systemic lupus erythematosus (SLE). The lab uses various chimeric and genetic knock-in murine strains to model the biology of human autoimmune diseases.

  • James Lab

    The James lab investigates how genetic variation and pharmacological treatments alter cellular signaling.

  • Jensen Lab

    At Seattle Children’s, the Jensen Lab is pursuing a cutting-edge treatment that reprograms a child’s defense system to attack and kill cancer cells, without chemotherapy or radiation – or their debilitating side effects.

  • Jimenez Lab

    The Jimenez Lab studies traumatic brain injuries and health disparities.

  • Kalia Lab

    The Kalia Lab studies how immune cells fend off disease and makes discoveries that help improve cancer immunotherapies.

  • Kalume Laboratory

    The Kalume Laboratory investigates the mechanisms that drive epilepsy and related conditions, and pursues improved treatments for affected children and adults.

  • Lawlor Lab

    The goal of the Lawlor Lab is to discover how hijacking of normal developmental biologic programs contributes to the origin and progression of childhood cancer.

  • Maga Lab

    The Maga lab investigates fetal alcohol syndrome and the mechanisms responsible for human malformations, specifically craniofacial disorders.

  • Majesky Lab

    We use molecular biological and developmental genetic approaches to address fundamental questions in development and differentiation of blood vessels. Current projects use both mouse and avian models. One major research focus is on vascular stem and progenitor cells that reside in the adventitial layer of artery wall.

  • Maves Lab

    The Maves lab investigates skeletal muscle and heart development, with the goal of making discoveries that lead to new treatments for muscular dystrophy and heart disorders. We use the zebrafish as an animal model because of advantages for genetic manipulations, in vivo imaging, and drug screening.

  • Mendoza Lab

    The Mendoza lab focuses on preventing childhood obesity and its long-term health effects, especially among minorities and low-income groups.

  • Miao Lab

    The Miao Lab is pursuing safer, more effective treatments for hemophilia. Our current work focuses on innovative gene therapy approaches.

  • Mirzaa Lab

    Dr. Ghayda Mirzaa’s lab pinpoints the genes that contribute to many neurodevelopmental disorders, opening the door to new treatments.

  • Morgan Laboratory

    The Morgan laboratory studies mitochondria’s role in childhood diseases.

  • Neonatal Respiratory Support Technologies Team

    The Neonatal Respiratory Support Technologies (NeoRest) team, based in Seattle Children's Research Institute's Center for Integrative Brain Research, is working to reduce infant mortality and morbidity by developing affordable, easy-to-use and easy-to-maintain respiratory support solutions.

  • Nigam Lab

    The Nigam Lab aims to improve the care of young cardiac patients by discovering innovative solutions for hypoplastic left heart syndrome; improving outcomes for children undergoing cardiac surgery with cardiopulmonary bypass and mechanical circulatory support; and inventing new tools that make cardiac surgery safer.

  • Oda Lab

    We develop engineering strategies that enable T cells to overcome obstacles in the tumor microenvironment and mount a more powerful, durable and sustained attack on cancer cells.

  • Okamura Lab

    The Okamura lab is currently investigating the role of macrophages in mediating both inflammatory and oxidative pathways and their role in cellular crosstalk with interstitial fibroblasts during chronic kidney injury.

  • Olson Lab

    Dr. Aaron Olson is unraveling how changes in cardiac energy production affect heart function. Congenital heart disease and other cardiac problems change how the heart produces energy. While researchers know that these changes impact heart function, they don’t know the mechanisms of this interaction. By identifying

  • Orentas Lab

    The Orentas Lab investigates how the immune system and CAR T-cell immunotherapies can be leveraged to fight childhood childhood cancers like rhabdomyosarcoma, osteosarcoma, Ewing’s sarcoma and neuroblastoma.

  • Palliative Care and Resilience Research Program (PCAR)

    We are developing ways to help children, teens and young adults – and their parents – become more resilient in the face of serious health problems.

  • Pediatric Pain and Sleep Innovations Lab (PPSI)

    The Pediatric Pain and Sleep Innovations Lab’s research focus is on pain in children.

  • Piliponsky Lab

    The Piliponsky Lab studies inflammatory responses involving mast cells and myeloid cells.

  • Portman Research Group

    The Portman Research Group discovers ways to protect children’s hearts from damage related to surgery, and leads major research on Kawasaki disease.

  • Program in Mitochondrial Biology

    The Program in Mitochondrial Biology’s team delivers clinical care and researches potential cures for mitochondrial diseases.

  • Rabbitts Lab

    Dr. Jennifer Rabbitts’ Lab focuses on long-term pain and health outcomes in children and adolescents undergoing surgery.

  • Ramirez Lab

    The Ramirez Lab investigates brain functions in order to develop new ways to treat – and potentially cure – neurological disorders.

  • Rheumatology Research

    The Rheumatology Research team at Seattle Children’s is committed to improving the lives of children through innovative, patient-focused research.

  • Saelens Lab

    Brian E. Saelens, PhD, conducts research in environmental influences on physical activity and eating behaviors and on the psychosocial factors that influence individual choice for weight-related behaviors. This work includes examining how the neighborhood environment impacts weight status, physical activity and

  • Sarkar Lab

    The Sarkar Lab is finding ways to help the immune system remember cancer and attack it if it relapses.

  • Sathyanarayana Lab

    The Sathyanarayana Lab investigates how chemicals in our environment impact children and develops ways for families to reduce chemical exposures.

  • Seattle Children’s Innovative Technologies Lab (SCITL)

    Seattle Children’s Innovative Technologies Lab (SCITL), directed by Dr. Frederick Shic, is dedicated to using, advancing and developing everyday technologies for improving the lives of children with autism spectrum disorder and other developmental disabilities.

  • Seattle Pediatric Concussion Research Collaborative

    The Seattle Pediatric Concussion Research Collaborative conducts studies to find better ways to prevent, diagnose and treat youth concussion.

  • Sedensky Laboratory

    The Sedensky laboratory studies mitochondria’s role in childhood diseases.

  • SEPS Lab

    Led by Dr. Stephen E.P. Smith, the SEPS Lab is working to uncover what the gene variations that contribute to autism have in common.

  • Shih Lab

    The Shih Lab uses advanced optical imaging to study neurovascular function in the living brain. Our goal is to better understand how blood flows through the brain by watching and learning from model organisms. This can provide clues on the development and repair of key vascular functions, such as the blood-brain barrie

  • Turner Lab

    Dr. Eric Turner’s Lab is defining brain pathways underlying motivation, emotion and addiction, and mapping brain circuits in mice.

  • Vascular Anomalies Research

    The Vascular Anomalies Program at Seattle Children’s is nationally recognized for its expertise and innovations in research. Through our collaborative approach, we are learning more about each condition, testing new therapies and standardizing clinical care for children with vascular anomalies (VAN).

  • Yu Lab

    Dr. Kai Yu’s lab studies how craniofacial malformations occur, opening the door to new ways to diagnose, prevent and treat them.

  • Zheng Lab

    The Zheng Lab is dedicated towards understanding the pathways of disease in pediatric gastrointestinal autoimmune conditions such as Crohn’s disease (CD) and ulcerative colitis (UC).