Noah Sather, PhD

Noah Sather, PhD

Infectious Disease Research

Children's Title: Associate Professor

Academic Title: Affiliate Assistant Professor, University of Washington

Research Center: Center for Global Infectious Disease Research

  • Noah Sather, PhD, is an associate professor at the Center for Global Infectious Disease Research. He joined the center in 2015 to advance its programs in vaccine development for HIV-1 and malaria. Sather received his PhD at Wayne State University in biological sciences, where his thesis work focused on a systems analysis to unravel the secrets of developmental biology. He joined the center as a postdoctoral fellow in the laboratory of Dr. Leo Stamatatos, where he worked to understand how anti–HIV-1 antibodies develop.

  • Manuscripts in Refereed Journals

    • Simonich CA, Doepker L, Ralph D, Williams JA, Dhar A, Yaffe Z, Gentles L, Small CT, Oliver B, Vigdorovich V, Mangala Prasad V, Nduati R, Sather DN, Lee KK, Matsen Iv FA, Overbaugh J.
      Kappa chain maturation helps drive rapid development of an infant HIV-1 broadly neutralizing antibody lineage.
      Nat Commun, 2019 May 16 : 10(1)2190 PMCID:PMC6522554
      https://www.ncbi.nlm.nih.gov/pubmed/31097697
    • Swearingen KE, Eng JK, Shteynberg D, Vigdorovich V, Springer TA, Mendoza L, Sather DN, Deutsch EW, Kappe SHI, Moritz RL.
      A tandem mass spectrometry sequence database search method for indentification of O-fucosylated proteins by mass spectrometry.
      J Proteome Res, 2019 Feb. 1 : 18(2)652-663 PMCID:PMC6445572
      https://www.ncbi.nlm.nih.gov/pubmed/30523691
    • Chukwuma VU, Kose N, Sather DN, Sapparapu G, Falk R, King H, Singh V, Lampley R, Malherbe DC, Ditto NT, Sullivan JT, Barnes T, Doranz BJ, Labranche CC, Montefiori DC, Kalams SA, Haigwood NL, Crowe JE Jr.
      Increased breadth of HIV-1 neutralization achieved by diverse antibody clones each with limited neutralization breadth.
      PLoS One, 2018 Dec. 19 : 13(12)e0209437 PMCID:PMC6300260
      https://www.ncbi.nlm.nih.gov/pubmed/30566528
    • Arredondo SA, Swearingen KE, Martinson T, Steel R, Dankwa DA, Harupa A, Camargo N, Betz W, Vigdorovich V, Oliver BG, Kangwanrangsan N, Ishino T, Sather N, Mikolajczak S, Vaughan AM, Torii M, Moritz RL, Kappe SHI.
      The micronemal Plasmodium proteins P36 and P52 act in concert to establish the replication-permissive compartment within infected hepatocytes.
      Front Cell Infect Microbiol, 2018 Nov. 27 : 8413 PMCID:PMC6280682
      https://www.ncbi.nlm.nih.gov/pubmed/?term=30547015
    • Schaefer C, Dambrauskas N, Steel RW, Carbonetti S, Chuenchob V, Flannery EL, Vigdorovich V, Oliver BG, Roobsoong W, Maher SP, Kyle D, Sattabongkot J, Kappe SHI, Mikolajczak SA, Sather DN.
      A recombinant antibody against Plasmodium vivax UIS4 for distinguishing replicating from dormant liver stages.
      Malar J, 2018 Oct. 17 : 17(1)370 PMCID:PMC6192329
      https://www.ncbi.nlm.nih.gov/pubmed/?term=30333026
    • Yacoob C, Lange MD, Cohen K, Lathia K, Feng J, Glenn J, Carbonetti S, Oliver B, Vigdorovich V, Sather DN, Stamatatos L.
      B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of rhesus macaques.
      PLoS Pathog, 2018 June 22 : 14(6)e1007120 PMCID:PMC6033445
      https://www.ncbi.nlm.nih.gov/pubmed/?term=29933399
    • Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V, Andolina C, Kaba SA, Vantaux A, Bakowski MA, Thomson-Luque R, Adapa SR, Singh N, Barnes SJ, Cooper CA, Rouillier M, McNamara CW, Mikolajczak SA, Sather DN, Witkowski B, Campo B, Kappe SHI, Lanar DE, Nosten F, Davidson S, Jiang RHY, Kyle DE, Adams JH.
      A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum.
      Nat Commun, 2018 June 8 : 9(1)2317 PMCID:PMC5993793
      https://www.ncbi.nlm.nih.gov/pubmed?term=29884783
    • Johnson JS, Lucas SY, Amon LM, Skelton S, Nazitto R, Carbonetti S, Sather DN, Littman DR, Aderem A.
      Reshaping of the dendritic cell chromatin landscape and interferon pathways during HIV-1 Infection.
      Cell Host & Microbe, 2018 March 14 : 23(3)366-81 PMCID:PMC6176724
      https://www.ncbi.nlm.nih.gov/pubmed?term=29544097
    • Hahn WO, Butler NS, Lindner SE, Akilesh HM, Sather DN, Kappe SH, Hamerman JA, Gale M Jr., Liles WC, Pepper M.
      cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses.
      JCI Insight, 2018 Jan. 25 : 3(2) PMCID:PMC5821207
      https://www.ncbi.nlm.nih.gov/pubmed/?term=29367469
    • Steel RWJ, Pei Y, Camargo N, Kaushansky A, Dankwa DA, Martinson T, Nguyen T, Betz W, Cardamone H, Vigdorovich V, Dambrauskas N, Carbonetti S, Vaughan AM, Sather DN, Kappe SHI.
      Plasmodium yoelli S4/CelTOS is important for sporozoite gliding motility and cell traversal.
      Cellular Microbiology, 2017 Dec. 18
      https://www.ncbi.nlm.nih.gov/pubmed/?term=29253313
    • Kessler A, Dankwa S, Bernabeu M, Harawa V, Danziger S, Duffy F, Kampondeni SD, Potchen MJ, Dambrauskas N, Vigdorovich V, Oliver BG, Hochman SE, Mowrey WB, MacCormick I, Mandala WL, Rogerson SJ, Sather DN, Aitchison JD, Taylor TE, Seydel KB, Smith JD, Kim K.
      Linking EPCR-binding PfEMP1 to brain swelling in pediatric cerebral malaria.
      Cell Host & Microbe, 2017 Nov. 8 : 22(5)601-614 PMCID:PMC5783720
      https://www.ncbi.nlm.nih.gov/pubmed/?term=29107642

  • Presentations Title Event Location Date
    Characterization of a new host receptor interaction for PfTRAP identifies a new site of vulnerability for vaccine design ICOPA 2018 Daegu, South Korea 2018
    Toward rational vaccine design for pre-erythrocytic malaria vaccines Joint International Tropical Medicine Meeting 2017 Bangkok, Thailand 2017
    Deciphering host pathogen interactions to inform vaccine design Wayne State University, Detroit, MI 2017
    Exploring the potential of vaccine-elicited antibodies against the pre-erythrocytic stages of P. vivax malaria to bolster eradication efforts International Conference on P. vivax Research Manaus, Brazil 2017
    Novel antibody-inducing vaccine targets against pre-erythrocytic malaria Joint International Tropical Medicine Meeting 2016 Bangkok, Thailand 2016
    Development of pre-erythrocytic vaccine immunogens to induce protective antibodies against malaria Gordon Research Conference on Malaria Girona, Spain 2015
    Novel antibody-inducing vaccine targets against pre-erythrocytic malaria Fred Hutchinson Cancer Research Center VIDD-invited speaker Seattle, WA 2015
    Repertoire analysis of the B cell receptor-encoding loci in humans and rhesus macaques by next generation sequencing Keystone Symposium- HIV Vaccines Banff, Alberta, Canada 2015
    Development of broadly neutralizing anti-HIV-1 antibodies during natural infection through early epitope acquisition and subsequent antibody maturation Research 4 Prevention Cape Town, South Africa 2014
    B cell receptors containing key structural VRC01-like germline amino acid residues are present in the circulating IgM+ B cell repertoire in outbred rhesus macaques Keystone Symposium- HIV Pathogenesis- Virus vs Host Banff, Alberta, Canada 2014
    HIV-1 gp140 Env immunogens derived from an elite neutralizer elicit conformational V1V2 antibodies and broad, but low potency bNAb responses Keystone Symposium- HIV Vaccines Keystone, CO 2013
    Escape from broadly neutralizing antibodies impacts the fitness of the circulating HIV-1 virus in an elite neutralizer Keystone Symposium- HIV Vaccines Keystone, CO 2012
    Escape from autologous anti-CD4-BS NAbs during natural HIV-1 infection Keystone Symposium- Protection from HIV: Targeted Intervention Strategies Whistler, British Columbia, Canada 2011
    Characteristics of the earliest cross-neutralizing antibody responses in acute infection US-Japan AIDS Panel Awaji Island, Japan 2010
    The earliest cross-neutralizing responses The Search for Broadly Protective Anti-HIV Antibodies NIH/NIAID, Bethesda, MD 2010
    Escape from broadly neutralizing anti-CD4-BS NAbs during HIV-1 infection Keystone Symposium- HIV Vaccines Banff, Alberta, Canada 2010
    Neutralization escape in the context of broadly neutralizing anti-CD4 binding site NAbs during HIV-1 infection AIDS Vaccine 2009 Paris, France 2009
    Determinants of Cross-Reactive Neutralizing Antibody Responses Developed During Natural HIV-1 Infection Keystone Symposium- HIV Immunobiology: From Infection to Immune Control Keystone, CO 2009
    Prevalence of Neutralizing Antibodies targeting the MPER region of the HIV gp41 transmembrane protein in two HIV-infected cohorts Collaboration for AIDS Vaccine Discovery Annual Meeting Seattle, WA 2009
    Factors Associated with the Emergence of Cross-Reactive NAb Responses in HIV-1 Infection Viral Pathogenesis Symposium Fred Hutchinson Cancer Research Center, Seattle, WA 2008
    Evaluation of Cross-Neutralizing Antibody Responses in Acute and Chronic HIV-1 Infected Patients Keystone Symposium - HIV Vaccines: Progress and Prospects Banff, Alberta, Canada 2008
    Sex-specific SpWUSCHEL function and its role in sexual dimorphic development in Spinacia Oleracea L Development 2006 University of Michigan, Ann Arbor, MI 2006
    Sex-specific expression and alternative splicing of SoWUSCHEL are associated with sexual dimorphism in Spinacia Oleracea L Developmental Basis of Evolutionary Change 2005 University of Chicago, Chicago, IL 2005
  • Grant Title Grantor Amount Award Date
    Kinetics, evolution, and effector function of Fc repertoires during vaccination with native-like Env trimers. - R01AI140951 (Sather) NIH/NIAID $612,114 Annual Direct Costs Feb. 20, 2019 - Jan. 31, 2024
    Development of a pre-erythrocytic P. vivax vaccine to prevent clinical relapse. - R01AI137234 (Sather) NIH/NIAID $465,700 Annual Direct Costs Jan. 1, 2019 - Dec. 31, 2023
    Single-cell transcriptome analysis of Leishmania-infected macrophages. 39434017 (Myler/Sather) SCRI/CGIDR $50,000 Jan. 1, 2019 - Sept. 30, 2019
    Using single cell systems biology to evaluate the role of prior infection in vaccine-induced protection. (Sather) W.F. Keck Foundation $254,250 Annual Direct Costs July 1, 2018 - June 30, 2020
    Core I: Immunology Core - 2P30 AI027757-31 (Baeten) NIH/NIAID/UW June 1, 2018 - May 31, 2023
    Harnessing oral mucosa vaccination to drive protective HIV antibody responses - R01 DE026336 (Sather) NIH/NIDCR $515,885 Annual Direct Costs July 1, 2016 - May 31, 2021
    Infection-blocking antibody targets for malaria - R01 AI117234 (Sather/Kappe) NIH/NIAID $451,400 Annual Direct Costs April 1, 2016 - March 31, 2021

Overview

Research Description

The Sather Lab utilizes state-of-the-art technology to develop novel vaccine immunogens and strategies. In addition, the lab is interested in deciphering the mechanisms of antibody mediated protective immunity by HIV or malaria vaccination. The Sather Lab actively collaborates with scientists from the Fred Hutchinson Cancer Research Center, Oregon Health and Sciences University, the University of Washington and Vanderbilt University. Read more about the Sather Lab.

Research Focus Area

Genetics, Genetic Engineering, Global Health, HIV/AIDS, Host-Pathogen Interaction, Immunology, Infectious Disease, Malaria, Systems Biology