Alexis Kaushansky, PhD

Alexis Kaushansky, PhD

Infectious Disease Research

Children's Title: Principal Investigator, Supervisor, Center for Global Infectious Disease Research

Academic Title: Associate Professor

Research Center: Center for Global Infectious Disease Research

  • Biography

    Alexis Kaushansky, PhD, is an associate professor at the Center for Global Infectious Disease Research. She received her BS in chemistry from Harvey Mudd College in 2004, and her PhD from Harvard University in 2010. During her PhD, she trained with Dr. Gavin MacBeath, where she was fortunate to work as part of an interdisciplinary team that included chemists, computer scientists and biologists to develop protein array technology and apply this approach to understanding the molecular changes that occur in cancer. She joined Dr. Stefan Kappe’s group as a postdoctoral fellow in 2010 to use similar technologies to uncover changes that occur in the liver in response to malaria infection. In 2015, she started a lab at the center which is focused on discovering how pathogens, such as malaria, interact with their human host and using this knowledge to eliminate infection. Outside of work, she enjoys running, cooking, traveling and debating current events.

  • Patient Testimonials

  • Awards and Honors

    Award Name Award Description Awarded By Award Date
    Member Institute for Stem Cell & Regenerative Medicine (ISCRM) 2020
    40 Under 40 Honoree Puget Sound Business Journal 2019
    Member Brotman Baty Institute 2019
    Member American Society of Tropical Hygiene and Medicine 2018
    W.M. Keck Foundation Award Keck Foundation 2018
    Eukaryotic Cell Best Presentation Award Molecular Parasitology Meeting 2014
    NRSA Postdoctoral Fellow 2010 - 2013
    GSAS Merit Fellowship Finalist Harvard University 2009
    Distinction in Teaching Award Harvard University 2007 - 2009
  • Publications

    Manuscripts in Refereed Journals

    • Harupa A, De Las Heras L, Colmenarejo G, Lyons-Abbott S, Reers A, Caballero Hernandez I, Chung CW, Charter D, Myler PJ, Fernández-Menéndez RM, Calderón F, Palomo S, Rodríguez B, Berlanga M, Herreros-Avilés E, Staker BL, Fernández Álvaro E, Kaushansky A.
      Identification of Selective Inhibitors of Plasmodium N-Myristoyltransferase by High-Throughput Screening
      J Med Chem., 2020 Jan 23 : 63(2)591-600.
    • Vijayan K, Cestari I, Mast FD, Glennon EKK, McDermott SM, Kain HS, Brokaw AM, Aitchison JD, Stuart K, Kaushansky A.
      Plasmodium Secretion Induces Hepatocyte Lysosome Exocytosis and Promotes Parasite Entry.
      iScience., 2019 Nov 22 : 21603-611.
    • Tran TM, Guha R, Portugal S, Skinner J, Ongoiba A, Bhardwaj J, Jones M, Moebius J, Venepally P, Doumbo S, DeRiso EA, Li S, Vijayan K, Anzick SL, Hart GT, O'Connell EM, Doumbo OK, Kaushansky A, Alter G, Felgner PL, Lorenzi H, Kayentao K, Traore B, Kirkness EF, Crompton PD.
      A Molecular Signature in Blood Reveals a Role for p53 in Regulating Malaria-Induced Inflammation.
      Immunity., 2019 Oct 15 : 51(4)750-765.e10
    • Vijayan K, Kaushansky A.
      Exciting Contributions to the Cryptosporidium Renaissance.
      Cell Host Microbe., 2019 Jul 10 : 26(1)5-7.
    • Regier MC, Olszewski E, Carter C, Aitchison JD, Kaushansky A, Davis J, Berthier E, Beebe DJ, Stevens KR.
      Spatial presentation of biological molecules to cells by localized diffusive transfer.
      Lab Chip., 2019 Jun 11 : 19(12)2114-2126
    • Kain HS, Glennon EKK, Vijayan K, Arang N, Douglass AN, Fortin CL, Zuck M, Lewis AJ, Whiteside SL, Dudgeon DR, Johnson JS, Aderem A, Stevens KR, Kaushansky A.
      Liver stage malaria infection is controlled by host regulators of lipid peroxidation.
      Cell Death Differ., 2019 May 7 : Epub ahead
    • Glennon EK, Austin LS, Kain HS, Arang N, Douglass AN, Mast FD, Aitchison JD, Kappe SHI and Kaushansky A.
      Alterations in Phosphorylation of Hepatocyte Ribosomal Protein S6 Control Plasmodium Liver Stage Infection.
      Cell Reports., 2019 Mar 19 : 26(12)3391-3399.e4. PMCID:PMC6447308
    • Patterson N, Tuck M, Lewis A, Kaushansky A, Norris J, Van de Plas R, Caprioli R.
      Next generation histology-directed imaging mass spectrometry driven by autofluorescence microscopy.
      Analytical Chemistry., 2018 Nov 6 : 90(21)12404-12413 PMCID:PMC6309458
    • Steel RWJ, Pei Y, Camargo N, Kaushansky A, Dankwa DA, Martinson T, Nguyen T, Betz W, Cardamone H, Vigdorovich V, Dambrauskas N, Carbonetti S, Vaughan AM, Sather DN, Kappe SHI.
      Plasmodium yoelli S4/CelTOS is important for sporozoite gliding motility and cell traversal.
      Cellular Microbiology., 2018 April : 20(4)
    • Arang N, Kain HS, Glennon EK, Bello T, Dudgeon DR, Walter ENF, Gujral TS, Kaushansky A.
      Identifying host regulators and inhibitors of liver stage malaria infection using kinase activity profiles.
      Nature Communications., 2017 Nov 1 : 8(1)1232 PMCID:PMC5663700
    • Kaushansky A, Douglass AN, Arang N, Vigdorovich V, Dambrauskas N, Kain HS, Austin LS, Sather DN, Kappe SHI.
      Malaria parasites target the hepatocyte receptor EphA2 for successful host infection.
      Science., 2015 Nov 27 : 350(6264)1089-92 PMCID:PMC4783171
    • Douglass AN, Kain HS, Abdullahi M, Arang N, Austin LS, Mikolajczak SA, Billman ZP, Hume JC, Murphy SC, Kappe SHI, Kaushansky A.
      Host-based prophylaxis successfully targets liver stage malaria parasites.
      Mol. Therapy., 2015 May : 23(5)857-865 PMCID:PMC4427874
    • Mikolajczak SA, Vaughan AM, Yimamnuaychok N, Kangwanrangsan N, Rezakhani N, Lindner SE, Singh N, Kaushansky A, Baldwin M, Adams JH, Prachumsri J, Kappe SHI.
      Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice.
      Cell Host Microbe., 2015 Apr 8 : 17(4)526-35 PMCID:PMC5299596
    • Kaushansky A, Austin LS, Mikolajczak SA, Lo FY, Miller JL, Douglass AN, Arang N, Vaughan AM, Gardner MJ, Kappe SH.
      Susceptibility to Plasmodium yoelli pre-erythrocytic infection in BALB/c sub-strains is determined at the point of hepatocyte invasion.
      Infect Immun., 2015 Jan. : 83(1)39-47 PMCID:PMC4288894
    • Mikolajczak SA, Lakshmanan V, Fishbaugher M, Camargo N, Harupa A, Kaushansky A, Douglass AN, Baldwin M, Healer J, O’Neill M, Phuong T, Cowman A, Kappe SH.
      A Next-generation Genetically Attenuated Plasmodium falciparum Parasite Created by Triple Gene Deletion.
      Mol Ther., 2014 Sept. : 22(9)1707-15 PMCID:PMC4435496
    • Sangkhae V, Saur SJ, Kaushansky A, Kaushansky K, Hitchcock IS.
      Phosphorylated c-MPL tyrosine 591 regulates thrombopoietin-induced signaling.
      Exp Hematol., 2014 June : 42(6)477-86 PMCID:PMC5802363
    • Austin LS, Kaushansky A, Kappe SH.
      Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy.
      Cell Microbiol., 2014 May : 16(5)784-795 PMCID:PMC4008336
    • Finney OC, Keitany GJ, Smithers H, Kaushansky A, Kappe S, Wang R.
      Immunization with genetically attenuated P. falciparum parasites induces long-lived antibodies that efficiently block hepatocyte invasion by sporozoites.
      Vaccine., 2014 Apr 17 : 32(19)2135-8 PMCID:PMC4337823
    • Sack BK, Miller JL, Vaughan AM, Douglass A, Kaushansky A, Mikolajczak S, Coppi A, Gonzalez-Aseguinolaza G, Tsuji M, Zavala F, Sinnis P, Kappe SH.
      Model for In Vivo Assessment of Humoral Protection against Malaria Sporozoite Challenge by Passive Transfer of Monoclonal Antibodies and Immune Serum.
      Infect Immun., 2014 : 82808-817 PMCID:PMC3911395
    • Kaushansky A, Metzger PG, Douglass AN, Mikolajczak SA, Lakshmanan V, Kain HS, Kappe SH.
      Malaria parasite liver stages render host hepatocytes susceptible to mitochondria-initiated apoptosis.
      Cell Death Dis., 2013 Aug 8 : 4e762 PMCID:PMC3763448
    • Koytiger G, Kaushansky A, Gordus A, Rush J, Sorger PK, MacBeath G.
      Phosphotyrosine signaling proteins that drive oncogenesis tend to be highly interconnected.
      Mol Cell Proteomics., 2013 May : 12(5)1204-1213 PMCID:PMC3650332
    • Kaushansky A, Ye AS, Austin LS, Mikolajczak SA, Vaughan AM, Camargo N, Metzger PG, Douglass AN, MacBeath G, Kappe SH.
      Suppression of host p53 is critical for Plasmodium liver-stage infection.
      Cell Rep., 2013 Mar 28 : 3(3)630-7 PMCID:PMC3619000
    • Vaughan AM, Mikolajczak SA, Wilson EM, Grompe M, Kaushansky A, Camargo N, Bial J, Ploss A, Kappe SH.
      Complete Plasmodium falciparum liver-stage development in liver-chimeric mice.
      J Clin Invest., 2012 Oct. : 122(10)3618-28 PMCID:PMC3461911
    • Kaushansky A, Rezakhani N, Mann H, Kappe SH.
      Development of a quantitative flow cytometry-based assay to assess infection by Plasmodium falciparum sporozoites.
      Mol Biochem Parasitol., 2012 May : 183(1)100-3 PMCID:PMC3307955
    • Kaushansky A, Kappe SH.
      The crucial role of hepatocyte growth factor receptor during liver-stage infection is not conserved among Plasmodium species.
      Nat Med., 2011 Oct 11 : 17(10)1180-1 PMCID:PMC3607404
    • Jung AS, Kaushansky A, MacBeath G, Kaushansky K.
      Tensin2 is a novel mediator in thrombopoietin (TPO)-induced cellular proliferation by promoting Akt signaling.
      Cell Cycle., 2011 Jun 1 : 10(11)1838-44 PMCID:PMC3233486
    • Boettcher JP, Kirchner M, Churin Y, Kaushansky A, Pompaiah M, Thorn H, Brinkmann V, MacBeath G, Meyer TF.
      Tyrosine-phosphorylated caveolin-1 blocks bacterial uptake by inducing Vav2-RhoA-mediated cytoskeletal rearrangements.
      PLoS Biol., 2010 Aug 24 : 8(8) PMCID:PMC2927241
    • Mehlitz A, Banhart S, Mäurer AP, Kaushansky A, Gordus AG, Zielecki J, MacBeath G, Meyer TF.
      Tarp regulates early Chlamydia-induced host cell survival through interactions with the human adaptor protein SHC1.
      J Cell Biol., 2010 Jul 12 : 190(1)143-57 PMCID:PMC2911661
    • Kaushansky A, Allen JE, Gordus A, Stiffler MA, Karp ES, Chang BH, MacBeath G.
      Quantifying protein-protein interactions in high throughput using protein domain microarrays.
      Nat Protoc., 2010 April : 5(4)773-90 PMCID:PMC3085283
    • Gordus A, Krall JA, Beyer EM, Kaushansky A, Wolf-Yadlin A, Sevecka M, Chang BH, Rush J, MacBeath G.
      Linear combinations of docking affinities explain quantitative differences in RTK signaling.
      Mol Syst Biol, 2009 : 5235 PMCID:PMC2644171
    • Kaushansky A, Gordus A, Budnik BA, Lane WS, Rush J, MacBeath G.
      System-wide investigation of ErbB4 reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties.
      Chem Biol., 2008 Aug 25 : 15(8)808-17 PMCID:PMC2606095
    • Kaushansky A, Gordus A, Chang B, Rush J, MacBeath G.
      A quantitative study of the recruitment potential of all intracellular tyrosine residues on EGFR, FGFR1 and IGF1R.
      Mol Biosyst., 2008 June : 4(6)643-53 PMCID:PMC2811368
    • Miyakawa Y, Drachman JG, Gallis B, Kaushansky A, Kaushansky K.
      A structure-function analysis of serine/threonine phosphorylation of the thrombopoietin receptor, c-Mpl.
      J Biol Chem., 2000 Oct 13 : 275(41)32214-9

    Other Publications

    • Kaushansky A, Hedstrom L, Goldman A, Singh J, Yang PL, Rathod PK, Cynamon M, Wodarz D, Mahadevan D, Tomaras A, Navia MA, Schiffer CA.
      A call to arms: Unifying the fight against resistance.
      Sci Signal, 2018 Oct 23 : 11(553) PMCID:PMC6464114
    • Glennon EK, Dankwa S, Smith JD, Kaushansky A.
      Opportunities for host-targeted therapies for malaria. Review.
      Trends in Parasitology., 2018 Oct. : 34(10)843-860 PMCID:PMC6168423
    • Zuck M, Austin LS, Danziger SA, Aitchison JD, Kaushansky A.
      The promise of systems biology approaches for revealing host pathogen interactions in malaria. Review.
      Frontiers in Microbiology., 2017 Nov. : 82183 PMCID:PMC5696578
    • Douglass AN, Metzger PM, Kappe SHI, Kaushansky A.
      Flow cytometry-based assessment of antibody function against malaria pre-erythrocytic infection.
      Methods in Molecular Biology. , 2015 Dec. : 132549-58
    • Kaushansky A and Kappe SHI.
      Host ER stress during malaria parasite infection.
      EMBO Reports., 2015 Aug. : 16(8)883-4 PMCID:PMC4552477
    • Kaushansky A and Kappe SHI.
      Selection and Refinement: the malaria parasite infection and exploitation of host hepatocytes.
      Current Opinions in Microbiology. , 2015 Aug. : 2671-8 PMCID:PMC4577369
    • Kaushansky A and Kaushansky K.
      Systems Biology of Megakaryocytes.
      Adv, 2014 Dec. : 84459-84
    • Kaushansky A, Mikolajczak SA, Vignali M, Kappe SH.
      Of men in mice: the success and promise of humanized mouse models for human malaria parasite infections. Review.
      Cell Microbiol., 2014 May : 16(5)602-11 PMCID:PMC4008334
    • Lee JY, Moeller TA, Shipman R, Kaushansky A, Sahi J.
      Utility of Molecular-Based In Vitro Assays in Metabolic Liability of Drug Candidates.
      Encyclopedia of Drug Metabolism and Interactions, 2012
  • Presentations

    Presentation Title Event Location Date
    The surprising and non-canonical biology unearthed by a selective pathogen InterCenter Discovery Lunch Seattle Children's Research Institute, Seattle, WA March 2019
    Seeing the trees for the forest: Approaches to understanding cellular diversity in Pediatric Disease. Science Insights at the Institute Seattle Children's Research Institute, Seattle, WA March 2019
    The surprising and non-canonical biology unearthed by a selective pathogen. CGIDR Seminar Series Seattle Children's Research Institute, Seattle, WA Feb. 2019
    Non-canonical host cell signaling characterizes hepatocyte responses to Plasmodium infection Joint International Tropical Medicine Meeting Bangkok, Thailand Dec. 2018
    Ferroptosis-like signaling facilitates a potent innate defense against Plasmodium infection American Society of Tropical Hygiene and Medicine New Orleans, LA 2018
    The Battle Between Intracellular Pathogens and Their Hosts: Common Threads and Unique Features Bioengineering Seminar Series University of Washington, Seattle, WA May 2018
    The Battle Between Intracellular Pathogens and Their Hosts: Insights from Malaria Liver Stage and Beyond Microbial Pathogenesis and Host Defense Seminar Series University of California, San Francisco, CA Oct. 2017
    The Battle Between Intracellular Pathogens and Their Hosts: Common Threads and Unique Features Gordon Research Conference on Microbial Adhesion and Signal Transduction Salve Regina University, Newport, RI July 2017
    Integrating global and mechanistic approaches to studying interactions between malaria parasites and their host Harvard Medical School Department of Microbiology and Immunobiology May 2017
    Using kinase regression to elucidate host signaling pathways that control infection American Society for Biochemistry and Molecular Biology Annual Conference Chicago, IL April 2017
    Combining mechanistic and global insights to identify critical interactions between pathogen and host Gordon Research Conference on Chemical and Biological Terrorism Defense Ventura, CA March 2017
    Integrating global and mechanistic approaches to studying interactions between malaria parasites and their host Center for Infectious Disease Research Global Health Seminar Series Seattle, WA March 2017
  • Research Funding

    Grant Title Grantor Amount Award Date
    Identifying and exploiting personalized features of liver regeneration - CC33 (Stevens/Kaushansky) Brotman Baty Institute for Precision Medicine $150,000 Direct Costs March 2020 - Feb. 2021
    Using single cell systems biology to evaluate the role of prior infection in vaccine-induced protection. - (Kaushansky/Sather) W.M. Keck Foundation $1,000,000 Total Direct Costs July 2018 - June 2020
    Perturbations of host cell signaling by a complex hepatotropic pathogen. - R01GM101183 (Kaushansky) NIH/NIGMS $1,050,000 Total Direct Costs April 2017 - March 2022
    3D human-based microvessel bed for the study of Plasmodium falciparum interacting with vessel well. -R01HL130488-01 (Smith/Zheng) NIH/NIAID $1,353,196 Total Direct Costs Sep 30, 2015 - Sept. 2019


Research Description

The Kaushansky Lab works with the pathogens of infectious diseases like malaria that infect hundreds of millions of people every year. 

Research Focus Area

Drug Resistance, Global Health, Host-Pathogen Interaction, Immunology, Infectious Disease, Malaria, Systems Biology