Managing Oxygen Therapy in the Neonate

Purpose and Goal: CNEP # 2087

- Learn about the effects of oxygen on the neonate.
- Learn about the importance of minimizing oxygen exposure.

None of the planners, faculty or content specialists has any conflict of interest or will be presenting any off-label product use. This presentation has no commercial support or sponsorship, nor is it co-sponsored.

Requirements for successful completion:

- Successfully complete the post-test
- Complete the evaluation form
Date

- November 2018 – November 2020

Learning Objectives

- Describe the harmful effects of oxygen therapy.
- Describe the effects of oxygen free radical formation.
- Identify 2 approaches for the prevention of oxygen toxicity.

Introduction

- Oxygen is essential to sustain developing infants
- Supplemental use of oxygen is common in the NICU
 - It is the most commonly used drug
- Excessive or inappropriate use of oxygen may be harmful
 - It has been associated with cell injury
 - It has been shown to cause complications
- The most common negative effect is chronic lung disease

The History of Neonatal Oxygen Use

- 377 BC Hippocrates
 - Believed there was something in air
 - That entered the heart → body
- 1674 John Mayrow
 - Believed dark venous blood
 - Became red through absorption of air
- 1680 Robert Boyle
 - Believed air contained a vital substance
 - Which that served to refresh the spirit
- 1774 Joseph Priestly
 - Discovered oxygen
 - By heating mercuric oxide
 - He called it “dephlogisticated air”
- 1778 Antoine-Laurent Lavoisier
 - First coined the term “oxygen”
 - Showed that lungs take in oxygen
 - And eliminate carbon dioxide
- 1891 Docteur Esrasme Bonnaire
 - A French OB who noted
 - First gave oxygen to an infant
 - First noted that
 - A lack of oxygen led to hypoxia
 - Described an infant as a “blue baby”
- 1917 Scott Haldane
 - First published guidelines
 - “The Therapeutic Administration of Oxygen”
- 1950 Retinopathy of Prematurity
 - Oxygen accepted as a cure for everything
 - First used in infants with respiratory failure
 - Free flow oxygen given in incubators
 - Resulted in Retrolental Fibroplasia and blindness
- 1953 First Multi-Center Trial
 - 18 hospitals participated
 - First noted that:
 - >50% oxygen → death
 - <40% oxygen → “safe”
 - 40% oxygen → no ROP
- 1960s Higher Rates of Mortality
 - A more conservative approach
 - But resulted in higher rates of mortality
 - Despite a prevention of blindness
- 1970s Higher Rates of Morbidity
 - A more selective approach
 - Higher rates of dysplagia
 - Higher rates of lung disease noted
 - Especially when used with ventilation
- 1980s Advent of Pulse Oximetry
Developed to monitor oxygen saturations
American Academy of Pediatrics
 • Developed guidelines for use
 • Significantly ↓ risks of complications

1992 The Formation of ILCOR
 • International Committee on Resuscitation
 • Facilitated consensus recommendations

2000 ILCOR Published Guidelines
 • First set of guidelines for CPR

2010 ILCOR Updated CPR Recommendations
 • Guidelines are reviewed every 5 years
 • Current guidelines reflect evidence-based practice

Oxygen (O2) Use in the Neonate

• Oxygen is a drug and is essential
 • To sustain life itself
 • To sustain biological processes

• Most drugs have clear guidelines for use
 • O2 does not have clear guidelines
 • Except for neonatal resuscitation

• O2 is commonly used for infants in the NICU
 • Neonates experience distress
 • When oxygen levels are too low

• Low oxygen levels can lead to tissue damage
• Supplemental O2 is used to improve oxygenation
• The therapeutic use of oxygen
 • Requires a delicate balance
 • Maximizing and minimizing risks

• Recent studies show O2 can be toxic
 • Too little oxygen
 • Too much oxygen
 • Swings in O2 saturations

• Levels at which O2 becomes toxic are not well defined
Pulse Oximeter Monitoring of O2 Levels

- Continual oxygen monitoring is important
- The use of pulse oximeters is standard care
 - First developed in the 1980s
 - Peripheral capillary saturation monitoring
 - Monitors percentages of O2 bound hemoglobin
- Pulse oximeter measurements are helpful
 - In assessing oxygen levels in blood
- Pulse oximeter measurements are not helpful
 - In assessing oxygen levels in tissues
 - In assessing the oxygen needs of tissues
- There are numerous variables that dictate O2 needs
- Pathological conditions can elevate oxygen demands
 - Fever
 - Sepsis
 - Infections
- Motor activity can also elevate O2 demands
 - Agitation
 - Shivering
 - Seizures
- In contrast, some drugs can decrease O2 demands
 - Sedatives
 - Paralytics
- Therapeutic hypothermia also decreases O2 demands
- The use of O2 needs to be weighed against:
 - O2 saturation levels
 - Tissue O2 demand levels
- The use of O2 in an infant with high saturations
 - With low O2 demands
 - Can lead to hyperoxia
 - Can lead to complications
- The use of O2 in an infant with high saturations
 - With high O2 demands
 - Can lead to normoxia
 - Can lead to fewer complications
- The use of O2 in an infant with low saturations
• With low O2 demands
• Can lead to normoxia
• Can lead to fewer complications
• The use of O2 in an infant with low saturations
• With high O2 demands
• Can lead to hypoxia
• Can lead to complications

The Harmful Effects of Oxygen

• Too much O2 can have negative effects
 • On developing brains
 • On developing eyes
 • On developing lungs
• The fetus is exposed to a low O2 environment
• The neonate is exposed to a sudden high O2 environment
• NICU infants are at risk for oxygen toxicity
 • Due to increased exposure to O2
 • Due to free oxygen radical formation
 • Due to reduced antioxidant defenses
• Antioxidant systems are important
 • They do not develop until the third trimester
 • They prevent overproduction of O2 free radicals
• Underdeveloped antioxidant systems
 • Place infants at risk for:
 • Retinopathy of Prematurity
 • Necrotizing Enterocolitis
 • Intraventricular Hemorrhage
 • Bronchopulmonary Dysplasia
 • Chronic Lung Disease

Retinopathy of Prematurity

• Retinopathy of Prematurity
 • Is also known as ROP
• Previously known as RFP
 RFP = Retrolental Fibroplasia
• ROP is a vascular disorder of the eyes
• Recognized as causing blindness in 1940
• It is associated with:
 • Low birth weight
 • Low gestational age
 • Supplemental O2 therapy
• Evidence suggests the cause of ROP
 • Is associated with retinal immaturity
 • Is associated with ↑ retinal arterial O2
• Wide fluctuation in O2 saturations
 • Affect the developmental of ROP
 • Affect the progression of ROP
• Controlled administration of O2
 • Decreases the incidence of ROP
• Laser or cryotherapy treatments
 • Can have complications
 • Can lead to strabismus
 • Can lead to future myopia
• Prevention of ROP is the best approach

Chronic Lung Injury

• Chronic lung injury is multifactorial
 • Underventilation
 • ↓ alveolar recruitment
 • Loss of alveolar recruitment
 • Overventilation
 • Barotrauma
 • Volutrauma
• The fetal lung develops in a low O2 environment
• Exposure to a high neonatal O2 environment
 • Causes lung damage
 • Inhibits lung growth
 • ↑ production of free radicals
• Damages airways and lungs
 • Leads to Bronchopulmonary Dysplasia
 • Leads to Chronic Lung Disease
• Underdeveloped antioxidant systems
 • Interfere with normal lung development
 • Lead to O2 free radical lung injury
 • Inflammation
 • Diffuse alveolar damage
 • Progressive pulmonary dysfunction
• Minimizing invasive ventilation and O2
 • Are the best approach
 • To minimize lung damage

Oxygen Free Radicals

• Oxygen free radicals are derived from O2
• They are highly reactive chemical molecules
 • Produced by cell metabolism
 • Made up of unpaired electrons
 • Very unstable and short lived
• Free radicals are essential for growth
• Excess free radicals → oxidative stress
• The neonatal period is a time of oxidative stress
 • Excess free radicals
 • Can result from hypoxia
 • Can result from hyperoxia
 • Progressive ↑ free radicals
 • Increased cell damage
 • Can lead to inflammation
 • Increased tissue damage
 • Increased cell death
• Even a duration of high oxygen levels
 • Can lead to oxidative stress
 • Can lead to production of free radicals
• Normally there is a balance in the body
 • Between free radical formation
Between defense mechanisms
Antioxidants are defense mechanisms
- Prevent formation of free radicals
- Delay formation of free radicals
There are many well-known antioxidants
- Intracellular
 - Catalase
 - Glutathione
 - Superoxide dismutase
- Extracellular
 - Bilirubin
 - Transferrin
 - Vitamin A
 - Vitamin C
 - Vitamin E
 - Beta-carotene
Antioxidant systems are limited in the neonate
- They develop in the third trimester
- Preterm infants are at highest risk
 - Immature antioxidant systems
 - Decreased antioxidant enzymes
 - Decreased defense mechanisms
 - Increased risk of O2 toxicity

Clinical Approach to O2 Management

- O2 should be treated like a drug
- The most important strategy is to limit O2
 - There is currently no clear consensus
 - On the use of specific limits for use
- Current standards of care:
 - Using room air for resuscitation
 - Using an O2 blender at delivery
 - Using an O2 blender in the NICU
 - Limiting invasive ventilation
 - Increased use of CPAP
• Noninvasive Minute Ventilation
• High Flow Humidified Nasal Cannula
• Using pulse oximetry to titrate oxygen
 • Oxygen saturations
 • 88-93% <32 weeks
 • 90-95% >32 weeks
 • >95% only as needed
• Promoting prone positioning
• Decreasing free radical production
 • Preventing infection
 • Using fresh breastmilk
 • Preventing inflammation
 • Protecting TPN from light
 • Decreasing photo-oxidation
 • Decreasing blood transfusions
 • Decreasing oxidant load
• Limiting medications
 • Antibiotics
 • Analgesics
 • Anticonvulsants
• Supplementing antioxidants
 • Adequate nutrition
• Possible future standards of care:
 • Immune modulators
 • Interleukin-11

Factors Affecting Clinical Decision-Making

• There are several factors that influence care
• Clinical knowledge
 • Clinical experience
 • Advanced knowledge
 • Research knowledge
• Clinical expertise
 • Timely education
 • Previous experience
• Content specific education
• Infant focused case studies

• Use of current research
 • Conflicting study results
 • Confusing research reports
 • Transferability of research findings

• Use of intuition
 • Subjective judgements
 • Evidence-based practices

• Individual factors
 • Attitudes and beliefs
 • Questioning current practices
 • Information seeking behaviors

• Organizational factors
 • Staff resources
 • Infant acuity and workload
 • Multidisciplinary approach
 • Inconsistent provider practices

• Decision-making is complex and easily influenced
• Each NICU culture must balance multiple variables
 • Personal, social, historical, political
 • To enhance use of current research
 • To enhance ongoing nursing education
 • To provide optimal NICU care

Summary

• Supplemental O2 is common in the NICU
• Negative effects of O2 have been identified
 • The safest duration of O2 is not known
 • The safest O2 concentration is not known
• Infants should always be provided minimal O2
 • To avoid complications
 • To promote optimal outcomes
References

