How to Recognize a Suspected Cardiac Defect in the Neonate

Purpose and Goal: CNEP # 2092

- Understand the signs of congenital heart defects in the neonate.
- Learn to recognize and detect heart defects in the neonate.

None of the planners, faculty or content specialists has any conflict of interest or will be presenting any off-label product use. This presentation has no commercial support or sponsorship, nor is it co-sponsored.

Requirements for successful completion:

- Successfully complete the post-test
- Complete the evaluation form
Date

- December 2018 – December 2020

Learning Objectives

- Describe the risk factors for congenital heart defects.
- Describe the clinical features of suspected heart defects.
- Identify 2 approaches for recognizing congenital heart defects.

Introduction

- Congenital heart defects may be seen at birth
- They are the most common congenital defect
- They are the leading cause of neonatal death
- Many neonates present with symptoms at birth
 - Some may present after discharge
- Early recognition of CHD improves outcomes

Congenital Heart Defects

- Congenital heart defects are also known as CHD
- CHD occurs in 6-13/1000 live births
 - 15% occur as cyanotic defects
 - 25-33% occur as critical defects
- Up to 58% of CHD may be diagnosed prenatally
 - Prenatal ECHO is highly variable
 - Its sensitivity depends on:
 - Operator expertise
 - Gestational age
• Fetal position
• Type of defect
• CHD may be referred to as:
 • Cyanotic CHD
 • Ductal-dependent CHD
 • Critical CHD
• When the diagnosis of CHD is delayed:
 • The risk of morbidity increases
 • The risk of mortality increases

Types of Congenital Heart Defects

• CHD may be classified as:
 • Cyanotic CHD
 • Ductal-dependent CHD
 • Critical CHD
• Cyanotic heart defects
 • Intra or extra cardiac shunting
 • Circulate deoxygenated blood
• Ductal-Dependent heart defects
 • Dependent on a patent ductus arteriosus
 • To allow mixing of blood
 • Oxygenated
 • Deoxygenated
 • Many cyanotic defects are ductal dependent
• Critical heart defects
 • Require intervention
 • Catheter intervention
 • Cardiac surgery

Risk Factors for Congenital Heart Defects

• There are several risk factors for CHD
 • Family history
 • Multiple fetuses
- Genetic syndromes
 - In 7-12% of CHD
 - Most common in:
 - Trisomy 21
 - Turner syndrome
 - DiGeorge Deletion 22q

- Maternal factors
 - Obesity
 - Diabetes
 - Epilepsy
 - Hypertension
 - Preeclampsia
 - Thyroid disorders
 - Phenylketonuria
 - Mood disorders
 - Connective tissue disorders
 - Advanced age >40
 - Alcohol or substance use
 - Amphetamines
 - First trimester tobacco use

- Medications
 - NSAIDs
 - ACE inhibitors
 - Retinoic acid
 - Thalidomide
 - Phenytoin
 - Lithium

- In utero infections
 - Rubella
 - Coxsackie virus
 - Cytomegalovirus
 - Ebstein-Barr virus
 - Toxoplasmosis
 - Parvo virus B19
 - Herpes simplex virus
 - Flu-like illness

- Assisted reproductive technology
- There are several risk factors for ↑ survival
• Earlier diagnosis
• Lower birth weight
• Maternal age <30

Clinical Features of Congenital Heart Defects

• Some infants may present without symptoms
• Some present with immediate onset of symptoms
 • Shock
 • Cyanosis
 • Tachypnea
 • Pulmonary edema
• Shock may be seen in several types of CHD
 • Hypoplastic left heart syndrome
 • Critical aortic valve stenosis
 • Critical coarctation of the aorta
 • Interrupted aortic arch
• When infants present with shock:
 • Septic shock must be ruled out
 • Cardiogenic shock is suggested when:
 • Cardiomegaly is present on x-ray
 • Volume resuscitation is unsuccessful
• Cyanosis may be seen in several types of CHD
 • Pulmonary atresia
 • Ebstein’s anomaly
 • Truncus arteriosis
 • Tetralogy of Fallot
 • Ductal dependent lesions
 • Pulmonary valve atresia
 • Critical pulmonary valve stenosis
 • Hypoplastic left heart syndrome
 • Transposition of the great arteries
 • Total anomalous pulmonary venous return
• When infants present with cyanosis:
 • Non-cardiac causes must be ruled out
 • Sepsis
• Pulmonary
• Hypoglycemia
• Dehydration
• Hypoadrenalism
• Rare causes:
 • Methemoglobinemia
 • Metabolic disorders
• Cyanosis is suggested when:
 • Pulse oximetry saturations are <80s%
 • Pre and post-ductal saturations are different
 • A >3% difference is abnormal
• Tachypnea may be seen in several types of CHD
 • Truncus arteriosus
 • Patent ductus arteriosus
 • Large ventricular septal defects
 • Total anomalous pulmonary venous connection
• When infants present with respiratory distress:
 • Non-cardiac causes must be ruled out
 • Sepsis
 • Pulmonary
 • Hypoglycemia
 • Dehydration
 • Abnormal forms of hemoglobin

When to Be Suspicious of a Heart Defect

• CHD should be suspected with:
 • Family history of CHD
 • Abnormal fetal ECHO
 • Failed CCHD screens
• CHD should also be suspected with:
 • Heart murmur
 • Central cyanosis
 • Comfortable tachypnea
 • Comfortable desaturations
 • Increased CRT >3 seconds
• Associated anomalies
 • Trisomy 21
 • Skeletal anomalies
 • Hand and arm
 • CHARGE syndrome
 • Ear anomalies
 • Renal anomalies

Initial Diagnosis of Congenital Heart Defects

• Initial diagnosis is based on:
 • History
 • Physical findings
 • Chest x-rays
 • Hyperoxia test
 • Echocardiogram

• History
 • Risk factors
 • Poor feeding
 • Color changes
 • Excessive irritability
 • Excessive sweating
 • Poor weight gain
 • Excessive sleeping

• Physical findings include:
 • Abnormal heart rate
 • Comfortable tachypnea
 • Abnormal heart sounds
 • Abnormal precordial activity
 • Abnormal oxygen saturation
 • <90% in any extremity
 • Oxygen saturation gradient
 • >3% difference in extremities
 • Blood pressure gradient
 • >10 mmHg higher in arms
 • >10 mmHg lower in legs
• Abnormal femoral pulses
 • Weakened pulses
 • Absent pulses
• Hepatomegaly
• Chest x-rays
 • Heart size and shape
 • Dextrocardia
 • Enlarged heart size
 • >60% of the chest
 • Boot shaped heart
 • Egg shaped heart
 • Snowman shaped heart
• Pulmonary vascular markings
 • Decreased markings
 • ↓ pulmonary blood flow
 • Asymmetric markings
 • Pulmonary congestion
 • ↑ pulmonary blood flow
• Site of the aortic arch
 • Left sided arch is normal
 • Right sided arch abnormal
• Hyperoxia test
 • Useful in ruling out pulmonary causes
 • Obtain an ABG in room air
 • Right radial artery
 • Provide 100% oxygen for 10 minutes
 • Obtain an ABG in oxygen
 • Right radial artery
 • An ↑ O2 should be seen
 • pO2 should be >150
 • No significant ↑ in O2 is abnormal
• Electrocardiograms
 • A large right ventricle is normal
 • Right ventricular hypertrophy
 • Other presentations suggest CHD
 • A small right ventricle is abnormal
 • A large left ventricle is abnormal
 • Left ventricular hypertrophy
Classification of Abnormal Heart Sounds

- Murmurs may or may or be associated with CHD
- Murmurs associated with CHD include:
 - ≥ grade 3 intensity
 - Holosystolic timing
 - Maximum intensity
 - At upper left sternal border
 - With upright positioning
 - Diastolic murmur
 - Harsh or blowing quality
- Grading of murmurs:
 - Grade 1 murmur
 - Faint sound detected
 - Often only audible to cardiologists
 - Grade 2 murmur
 - Soft murmur
 - Readily detected
 - Grade 3 murmur
 - Louder than grade 2
 - Not associated with palpable thrill
 - Grade 4 murmur
 - Easily detected murmur
 - Associated with palpable thrill
 - Grade 5 murmur
 - Very loud murmur
 - Easily audible with stethoscope
 - Grade 6 murmur
 - Extremely loud murmur
 - Easily audible with stethoscope off chest

Specific Congenital Heart Defect Care

- Specific care is indicated for infants who are:
• Cyanotic
• Fail a hyperoxia test
• Do not have PPHN
• Do not have lung disease on x-ray
• In most cases, these infants have:
 • Cyanotic heart disease
 • A ductal dependent heart defect
 • An increased risk of significant morbidity
 • An increased risk of death
• The ductus arteriosus must be kept open
 • To ensure mixing of oxygenated blood
 • To ensure mixing of deoxygenated blood
• Prostaglandin should be started prior to an ECHO
 • The initial dose should be 0.01 mcg/kg/min
 • Dosing may be ↑ to 0.05 mcg/kg as needed
 • A Cardiology consult should be obtained
• An ECHO is not needed to treat these infants
• Transfer to a referral center should be immediate

Echocardiogram Examination

• Echocardiogram imaging is definitive
• It provides information on cardiac:
 • Anatomy
 • Function
• It can also evaluate for pulmonary causes
• The ECHO should include:
 • Cardiac imaging
 • Pulsed Doppler flow
 • Color Doppler flow
• ECHOs should be done in consultation with a cardiologist
• All ECHOs should be interpreted by a pediatric cardiologist

Summary

• CHDs are the most common defect in the neonate
• They are a leading cause of morbidity and mortality
• Early recognition and identification is critical
• Several clinical signs are suspicious for CHD
• Alert neonatal nurses can identify infants at risk

References

