Bubble CPAP - Continuous Positive Airway Pressure

Purpose and Goal: CNEP # 2117

- Learn about CPAP use in the NICU
- Learn about the benefits of Bubble CPAP use in preterm infants

None of the planners, faculty or content specialists has any conflict of interest or will be presenting any off-label product use. This presentation has no commercial support or sponsorship, nor is it co-sponsored.

Requirements for successful completion:

- Successfully complete the post-test
- Complete the evaluation form
Learning Objectives

- Describe the risks of surfactant deficiency in the neonate
- Describe the advantages of using Bubble CPAP in the NICU
- Describe 2 strategies to avoid nasal trauma from CPAP

Introduction

- Nasal CPAP is commonly used in the NICU
- CPAP is a mode of mechanical ventilation
 - It can minimize neonatal lung injury
 - While promoting physiologic stability
- CPAP works by delivering continuous
 - Air and oxygen
 - Distending pressures
- It is increasingly used for respiratory support
 - CPAP stents open the airways
 - And reduces work of breathing

Development of the Respiratory System

- Fetal lung development is divided into 5 stages
 - The embryonic stage
 - 0 - 7 weeks gestation
 - The pseudoglandular stage
 - 7 - 17 weeks gestation
 - The canalicular stage
- 17 - 27 weeks gestation
 - The saccular stage
 - 28 - 36 weeks gestation
 - The alveolar stage
 - 36 weeks gestation - 2 years
- The embryonic stage is characterized by:
 - Formation of the trachea
 - Development of mainstem bronchi
 - Development of pulmonary arteries
- The pseudoglandular stage is characterized by:
 - Differentiation of airways
 - Into conducting bronchioles
 - Into terminal bronchioles
 - Proliferation of pulmonary vasculature
- The canalicular stage is characterized by:
 - Formation of distal airways
 - Secretion of surfactant into alveoli
 - At 24 weeks gestation
- The saccular stage is characterized by:
 - Increasing surface area for gas exchange
 - Formation of capillary air-blood interface
- The alveolar stage is characterized by:
 - Formation of alveoli
 - Maturation of alveoli
 - Multiplication of alveoli
- Functional immaturity of the lungs
 - Is dependent on gestational age at birth
 - Because surfactant production
 - Is often not initiated
 - And generally not mature enough
 - To support extrauterine life
 - Without mechanical support
 - Until 32-36 weeks gestation
• Surfactant is a mixture of several substances
 • Protein
 • Phopho-lipids
 • Neutral lipids
• Surfactant lowers the surface tension
 • At the air-liquid alveoli interface
 • And prevents alveolar collapse
• Therefore, infants <32 weeks gestation
 • Have the highest risk of surfactant deficiency
 • Have the highest risk of respiratory distress
 • Have the highest risk of developing co-morbidities
 • BPD
 • ROP
 • IVH

Transition to Extrauterine Life

• Transition from fetal to neonatal life
 • Is a complex process
 • That involves physiologic changes
• Most term infants have a smooth transition
• Most premature infants are at a disadvantage
• Premature infants <32 weeks gestation
 • Are generally unprepared to handle
 • The physiologic demands of extrauterine life
• Alveolar instability and collapse are common
• Instability and collapse can cause
 • Impaired oxygenation
 • Decreased functional residual capacity
 • Hypoxemia
 • Respiratory distress
• Globally, over 13 million preterm infants
• <37 weeks gestation
 • Are born each year
• In the USA, preterm birth rates remain high
 • Over 400,000 infants
 • Are born <37 weeks every year
• Preterm infant mortality and morbidity
 • Are directly proportional
 • To gestational age at birth
• Efforts to reduce mortality and morbidity
 • Begin immediately after birth
 • And start with respiratory support
• Supportive respiratory measures are indicated
 • To support immature lungs
 • To establish physiologic stability
• Supportive measures may include
 • CPAP
 • Endotracheal intubation
 • Mechanical ventilation
• CPAP is a mode of ventilation that is
 • Gentle
 • Non-invasive
 • Well studied
• It can help mitigate the effects of lung immaturity
 • By minimizing lung injury
 • And improving long-term outcomes

Continuous Positive Airway Pressure

• Historically, mechanical ventilation
• Was used to oxygenate and ventilate infants
• Over time, it was discovered that ventilation
 • Caused volutrauma in infants
- Caused barotrauma in infants
- Increased morbidity and mortality
- Respiratory support strategies shifted
 - From invasive strategies
 - To non-invasive strategies
- CPAP was first recognized in 1971
- An initial CPAP trial met with success
 - Administered via endotracheal tube
 - Outcome: 16 out of 20 infants survived
- CPAP is a form of continuous distending pressure
- There are two main types of CPAP in use:
 - Continuous Flow
 - Conventional CPAP
 - Bubble CPAP
 - Variable Flow
 - Infant Flow Driven
 - Nasal-Jet Driven
- Continuous Flow CPAP
 - The flow of gas is fixed
 - The flow of gas is constant
 - In Conventional CPAP
 - Gas flows into the circuit
 - And into an exhalation valve
 - Which opens alternatively
 - To a set ventilator pressure
 - In Bubble CPAP
 - Gas flows into the circuit
 - And into a submerged expiratory limb
 - To a set water pressure
- Variable Flow CPAP
 - The flow of gas is inconsistent
 - In Infant Flow Driven CPAP
 - An infant flow driver
• Adjusts to the gas flow
• During the respiratory cycle
• While the gas flow is altered
• The set pressure is constant
• In Nasal-Jet CPAP
 • The system tubing
 • Is attached to a generator
 • That adjusts the gas flow
 • Based on sensed pressure
 • Based on airway resistance
• Multiple benefits of Bubble CPAP have been shown

Bubble Continuous Positive Airway Pressure

• Bubble CPAP was first introduced in 1975
• Bubble CPAP is a gas flow mixture
 • That is warmed and humidified
 • And flows from a wall to the infant
• It is administered via mask or nasal prongs
• The expiratory limb of the system
 • Is submerged in a sterile water chamber
 • At the desired depth in centimeters
 • That produces positive end expiratory pressure
• The oxygen flow rate ranges from 5-10 L/minute
 • And adjusted until gaseous bubbling is seen
 • The higher the flow → the more bubbling
 • The higher the flow → the higher the pressure
• The gas flow rate is an important variable
 • Fixed CPAP flow rates
 • Provide more effective pressures
• The bubbling provides a unique oscillation
 • Via the submersion in sterile water
• Of the expiratory limb of the system
• The oscillations have been found to:
 • Produce vibrations
 • That simulate waveforms
 • That improve gas exchange
 • That improve CO2 elimination
 • That work via facilitated diffusion
• The oscillations are an important feature
 • That distinguish Bubble CPAP
 • From other forms of CPAP
• Multiple Bubble CPAP studies have shown:
 • Lower oxygen requirements
 • Minimal respiratory decompensation
 • Less need for mechanical ventilation
 • Fewer infants with chronic lung disease
 • And decreased length of NICU stays
• Bubble CPAP has also been shown to:
 • Be non-invasive
 • Be inexpensive
 • Be easy to use
• Several comparison studies have been done
 • That show improved outcomes
 • Using continuous Bubble CPAP
 • Versus mechanical ventilation
• In comparison to other forms of respiratory support
 • Bubble CPAP has been shown to:
 • Reduce alveolar structural damage
 • Reduce pulmonary edema
 • Reduce pulmonary inflammation
 • Reduce pulmonary fibrosis
• These benefits are achieved by the oscillation
• Over time, Bubble CPAP results in:
 • Higher fluctuations of pressure
• Higher fluctuations of frequency
• Higher recruitment of atelectasis
• Equitable distribution of gas transport
• Of note: the noise from Bubble CPAP
 • Has been shown to ↑ surfactant production

Physiological Effects of Bubble CPAP

• CPAP works on the continuous flow principle
• CPAP uses blended air and oxygen
 • That is heated and humidified
 • Then delivered via low resistance
 • Via nasal masks and nasal prongs
• The distal end of the expiratory tubing
 • Is submerged underwater
 • The delivered pressure
 • Equals the depth of submersion
• Varying the depth of the submersion
 • Changes the pressure delivered
• Bubbling and pressure will cease whenever
 • The interface is blocked
 • The interface is displaced
 • The infant stops breathing
• There are currently no alarms available
• Frequent intermittent checks are mandatory
• Bubble CPAP pressures depend on
 • The infant breathing through
 • The submerged expiratory tubing
• If the infant’s mouth is open
 • Flow can leak
 • Causing a drop in pressure
• The physiologic effects of CPAP include:
• Decreased upper airway occlusion
• Decreased upper airway resistance
• Increased diaphragmatic tone
• Increased diaphragmatic contractility
• Increased lung compliance
• Decreased lower airway resistance
• Increased tidal volume in stiff lungs
• Improved ventilation and perfusion
• Decreased oxygen requirement
• Conservation of alveolar surfactant
• Decreased pulmonary edema

• Bubble CPAP may prevent the need for intubation
 • When used immediately at birth
 • In late preterm and term infants
 • And when used continuously in preterm infants
 • Until 32 weeks gestational age

Respiratory Support of Preterm Infants

• Mechanical ventilation is important
 • In the care of infants
 • With respiratory failure
• The goals of respiratory support are:
 • To maintain adequate gas exchange
 • To minimize the risks of lung injury
• There is a significant association between
 • Prolonged respiratory support
 • And bronchopulmonary dysplasia
 • And poor neurodevelopmental outcomes
• Providing Bubble CPAP at birth can help
• It is an effective non-invasive alternative option
 • In addition to intubation
As an alternative to intubation
Many studies have shown improved oxygenation
It is an excellent option for post-extubation care
 • It provides critical support
 • For in and out surfactant
 • For early elective extubation

Benefits of CPAP for Premature Infants

• The exact mechanism of how CPAP works
 • Is not entirely clear
 • The mechanism of action
 • Is multifactorial
• CPAP augments the driving pressure
 • Required to overcome
 • The elastic respiratory system
• CPAP changes the intra-pleural pressure
 • That affect respiratory muscles
 • And helps maintain lung volumes
• Several effects are subsequently noted
 • Increased pharyngeal area
 • Decreased airway resistance
 • Enhanced pulmonary compliance
• The end results of CPAP use include:
 • Reduction of work of breathing
 • Conservation of surfactant
 • On the alveolar surfaces
• In short, CPAP provides airway support
 • It stimulates the upper airways
 • It supports functional residual capacity
• Functional Residual Capacity
 • Is also known as FRC
• FRC is the volume of air
 • Left in the lungs after expiration
• Supporting FRC mitigates surfactant deficiency
• Additionally, CPAP is beneficial for preterm infants
• The immature respiratory system
 • In preterm infants
 • In late preterm infants
 • Is characterized by instability
 • Unstable alveoli
 • Unstable chest wall
• The immature airways are prone to collapse
 • Which decreases FRC
 • Which leads to respiratory failure
• CPAP supports an infant’s own efforts
 • To increase FRC
 • By increasing lung volumes
 • And stabilizing the chest wall
• CPAP also avoids side effects of intubation
 • Hemodynamic instability
 • Increased airway resistance
 • Ventilator induced lung injury
 • Acute and chronic airway trauma
 • Increased risk of lung infections
 • Reduced clearance of secretions

Strategies to Reduce Incidence of Injury

• Nasal septal abrasion and erosion
 • Are common side effects of CPAP
• Risk factors for nasal trauma include:
 • CPAP >5 days
 • Gestational age <32 weeks
• Birthweight <1500 grams
• Use of incorrect size of interface
• Prevention of nasal septal breakdown
 • Starts with correctly fitting equipment
 • Head size should be measured
 • To ensure correct hat choices
 • Nasal sizing guides should be used
 • To ensure correct prong choice
 • Equipment should be snug but not tight
• There are several strategies that can help
 • Frequent assessment every 3-6 hours
 • Check for decreased perfusion
 • Check nares for pressure areas
 • Check for blanching or excoriation
 • Correct fitting snug equipment
 • Hats
 • Masks
 • Prongs
 • Use Duoderm for protection
 • Or other hydrocolloid dressing
 • Exuderm
 • Replicare
 • Mepilex
 • To provide cushioning
 • To protect nares and philtrum
 • Remove CPAP and check skin every 3-6 hours
 • Brief assessments only
 • Not intended for entire cares
 • Not intended for long periods
 • Rotate between masks and prongs regularly
 • To offload pressure points
 • Around nares and philtrum
 • Choose a size that doesn’t cause blanching
• Massage nasal septum area during cares
 • To increase blood circulation
• Use one size larger mask if needed
 • To allow skin to rest
 • To allow tissue healing
• Maintain a gap of at least 2 mm
 • Between the septum and prongs
 • To avoid blanching, pinching, necrosis
• Consider using bacitracin ointment
 • To lower WBC counts
 • To improve healing to abrasions
• Infants should be repositioned regularly
 • To avoid pain
 • To avoid discomfort
• Hourly observation is recommended
 • With direct assessments with hands-on cares

Assessing for CPAP Related Nasal Injury

• Routine screening for nasal injury is critical
• There are several main areas of focus
 • Tip of nose
 • Nasal septum
 • Nostrils
 • Nose shape
• All areas should be assessed for injuries
• Tip of nose
 • Normal
 • Reddened
 • Red and indented
 • Red/indented/skin breakdown
 • All above + tissue loss
• Nasal septum
 • Normal
 • Reddened
 • Red and indented
 • Red/indented/skin breakdown
 • All above plus tissue loss
• Nostrils
 • Normal
 • Enlarged
 • Enlarged and prong shaped
 • Red and bleeding
 • As above + tissue loss
• Nose shape
 • Normal
 • Pushed up but normal
 • Pushed up and shortened
 • No return to normal
 • When prongs removed

Summary
• Bubble CPAP is increasingly used in the NICU
 • It has been shown to provide safe
 • It has been shown to provide effective care
• Bubble CPAP provides gentle non-invasive support
• It produces waves similar to oscillation
 • Which facilitate lung recruitment
• Hands on care and familiarity with CPAP
 • Increases the likelihood of success
• It’s effectiveness depends on:
 • Pressure generation
 • Type of nasal interface
Excellent nursing care

References

