Study Finds New Genes that Cause Baraitser-Winter Syndrome, a Brain Malformation

Human cells under a microscope

Research reveals new clues about cell function

Scientists from Seattle Children’s Research Institute and the University of Washington, in collaboration with the Genomic Disorders Group Nijmegen in the Netherlands, have identified two new genes that cause Baraitser-Winter syndrome, a rare brain malformation that is characterized by droopy eyelids and intellectual disabilities.

“This new discovery brings the total number of genes identified with this type of brain defect to eight,” said William Dobyns, MD, a geneticist at Seattle Children’s Research Institute. Identification of the additional genes associated with the syndrome make it possible for researchers to learn more about brain development. The study, “De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome,” was published online February 26 in Nature Genetics.

The brain defect found in Baraitser-Winter syndrome is a smooth brain malformation or “lissencephaly,” as whole or parts of the surface of the brain appear smooth in scans of patients with the disorder. Previous studies by Dr. Dobyns and other scientists identified six genes that cause the smooth brain malformation, accounting for approximately 80% of affected children. Physicians and researchers worldwide have identified to date approximately 20 individuals with Baraitser-Winter syndrome.

While the condition is rare, Dr. Dobyns said the team’s findings have broad scientific implications. “Actins, or the proteins encoded by the ACTB and ACTG1 genes, are among the most important proteins in the function of individual cells,” he said. “Actins are critical for cell division, cell movement, internal movement of cellular components, cell-to-cell contact, signaling and cell shape,” said Dr. Dobyns, who is also a University of Washington professor of pediatrics. “The defects we found occur in the only two actin genes that are expressed in most cells,” he said. Gene expression is akin to a “menu” for conditions like embryo development or healing from an injury. The correct combination of genes must be expressed at the right time to allow proper development. Abnormal expression of genes can lead to a defect or malformation.

“Birth defects associated with these two genes also seem to be quite severe,” said Dr. Dobyns. “Children and people with these genes have short stature, an atypical facial appearance, birth defects of the eye, and the smooth brain malformation along with moderate mental retardation and epilepsy. Hearing loss occurs and can be progressive,” he said.

Dr. Dobyns is a renowned researcher whose life-long work has been to try to identify the causes of children’s developmental brain disorders such as Baraitser-Winter syndrome. He discovered the first known chromosome abnormality associated with lissencephaly (Miller-Dieker syndrome) while still in training in child neurology at Texas Children’s Hospital in 1983. That research led, 10 years later, to the discovery by Dobyns and others of the first lissencephaly gene known as LIS1.

Dr. Dobyns’ co-authors on this study include: Jean-Baptiste Riviere, PhD, Seattle Children’s Research Institute; Christopher Sullivan, Seattle Children’s Research Institute; Susan Christian, Seattle Children’s Research Institute; Brian O’Roak, PhD, University of Washington; Jay Shendure, MD, PhD, University of Washington; and many other physicians and scientists from North America and Europe.

Additional Resources

About Seattle Children’s

Seattle Children’s Hospital, Foundation and Research Institute together deliver superior patient care, advance new discoveries and treatments through pediatric research, and raise funds to create better futures for patients. Consistently ranked as one of the top 10 children’s hospitals in the country by U.S. News & World Report, Seattle Children’s Hospital specializes in meeting the unique physical, emotional and developmental needs of children from infancy through young adulthood. Through the collaboration of physicians in nearly 60 pediatric subspecialties, Seattle Children’s Hospital provides inpatient, outpatient, diagnostic, surgical, rehabilitative, behavioral, and emergency and outreach services to families from around the world.

Located in downtown Seattle’s biotech corridor, Seattle Children’s Research Institute is pushing the boundaries of medical research to find cures for pediatric diseases and improve outcomes for children all over the world. Internationally recognized investigators and staff at the research institute are advancing new discoveries in cancer, genetics, immunology, pathology, infectious disease, injury prevention, bioethics and much more.

Seattle Children’s Hospital and Research Foundation and Seattle Children’s Hospital Guild Association work together to gather community support and raise funds for uncompensated care, clinical care and research. The foundation receives nearly 80,000 gifts each year, from lemonade stand proceeds to corporate sponsorships. Seattle Children’s Hospital Guild Association is the largest all-volunteer fundraising network for any hospital in the country, serving as the umbrella organization for 450 groups of people who turn an activity they love into a fundraiser. Support from the foundation and guild association makes it possible for Seattle Children’s care and research teams to improve the health and well-being of all kids.

For more information, visit or follow us on Twitter, Facebook and Instagram.