What Are They Really Doing?? - Physical Activity Measurement in Cerebral Palsy©
Kristie Bjornson, PhD, PT
March 28th, 2008

Program Handouts

This information is provided as a courtesy by Children's Health Care System and its related organizations (CHCS). Persons accessing this information assume full responsibility for the use of the information and understand and agree that CHCS is not responsible or liable for any claim, loss or damage arising from the use of the information. The views and opinions of the document authors do not necessarily state or reflect those of CHCS. Neither the authors nor CHCS nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such information.
What are they really doing??- Physical Activity Measurement in Cerebral Palsy

Kristie F. Bjornson, PhD, PT, PCS
Assistant Research Professor
Biobehavioral Nursing & Health Systems
School of Nursing
University of Washington
Seattle, WA 98105
Kristie.bjornson@seattlechildrens.org

Objectives:
- Understand measurement of physical activity in context of ICF framework
- Explore measures of physical activity in youth with CP
- Current documentation of physical activity via activity monitors in CP
- Questions/implications for:
 - Constraint Induced Movement Therapy (CIMT)
 - Body Weight-Supported Treadmill Training (BWSTT)
 - Orthotics (DAFO)

ICF model, WHO 2001

International Classification of Functioning, Disability & Health. 2001; WHO

ICF Model

Activity = 'execution of a task'
Routine walking as part of everyday life

Participation = 'involvement in a life situation' *
Participating in a walking club

* Social participation is valued differently by different individuals depending on his or her social and cultural context

Physical Activity - Ambulation

Level of Capability” vs. “Level of Performance”
Performance-based Measures of Physical and Walking Activity

Performance = what an individual actually does
- GMFCS
- Functional Mobility Scale
- ASKp vs ASKc
- LAQ-CP questionnaires
- Other questionnaires
- Activity Monitors

Other Questionnaires

(i) Functional Mobility Scale
- Rates child's usual walking ability (1-6) for different distances
- 5 / 50 / 500 metres
- ICF categories assessed
- Walking – short & long distances;
- Different locations;
- Equipment

(ii) Activity (and Participation) Questionnaires
- Traditionally, variable response
- Depends on who is reporting – child or parent (proxy) or doctor
- Can reflect subjective opinions, often proxy reports do not match self-report
- No one measure assesses all aspects of activity and participation
- Two recent excellent reviews
Activity (and Participation) Questionnaires

 - Identified 2 questionnaires with good psychometric properties that provided broadest description of how frequently children with CP perform a range of activities
 - ASK – 5-15 years, generic questionnaire addressing physical functioning
 - LAQ-CP – 3-10 years, condition specific questionnaire, addresses mobility, physical independence, schooling, social integration, clinical and economic burden

Activities Scale for Kids - ASK

- Self-report measure for children aged 5-15 years with physical disability
- 30 items (9 domains)
 - ASKCapability
 - measures what the child thinks he or she could do
 - "last week, I think I could have....."
 - ASKperformance
 - Takes into account the environment in which the child functions
 - "last week, I did"

ASK questionnaire

- Examples of questions relating to mobility
 - Walked without any support
 - Got around inside my house
 - Walked (or rolled) in crowded areas
 - Got around without help
 - Walked up and down a flight of stairs

ASK scores by global rating of disability

Unpublished data. Miller, Bjornson 2007
Lifestyle Assessment Questionnaire for CP - LAQ - CP

- 46 items (37 questions), parent completed questionnaire covering following domains:
 - Physical independence
 - Mobility limitation
 - Educational exclusion
 - Restriction of social interaction
 - Economic burden
 - Clinical burden

- Designed to assess impact of functional limitation
- Initially validated for children aged 4 – 6 years, extended to 5 – 16 years
- Expressed as total life style assessment score out of 100
- Higher scores reflect higher impact on child and family’s life
- Score 50 suggests assistance in ADL needed, requires educational support and limitation of family economic status
- Score 70 suggests special education setting, child’s disability severely impacts on child and the family

Kerr et al 2006 Child: Care, Health & Development 33(22)

Summary

- Clinic-based and lab-based measures tend to correlate well with each other.
- However, very little work done on defining the level of walking ability required to be a ‘community ambulator”
- Little work done on how clinic and lab-based measures correlate with level of activity in the community

Activity Monitoring

- Self report diary
- Heart rate monitoring
- Energy Expenditure
- Pedometers
- Accelerometers
- Global Positioning System

Activity Monitoring

- Uptimer (Pirpiris et al, 04)
 - Attached to lateral thigh (various attachment sites) – contains three mercury tilt switches that are responsive to limb position relative to gravity
 - Records time spent upright (not intensity)
- Advantages
 - Easy to use
- Potential disadvantages
 - Doesn’t record what the child is doing when upright: handing or walking or running

Up Time – Typically Developing Children

- Uptimer worn for 24 hrs
- Median “up-time” 5.5 hrs (range 1.5 -10.3 hrs)

What do we know about ambulatory activity in children with CP out in the community?

- Until recently, not very much!
Up Time – Children with Cerebral Palsy

- n=300 with CP, wore device 4x 24hr periods
- Children with hemiplegia have similar up-time compared to typically developing peers
- Reduced up-time in children with bilateral spasticity compared to typically developing peers

IDEEA® (Minisun.com)

- Intelligent Device for Energy Expenditure & Physical Activity
- 5 Triaxial accelerometers
- Gait parameters / 56 activities

IDEEA® (Intelligent Device for Energy Expenditure & Physical Activity)

- IDEEA data box clips to waist band
- 5 sensors with wires:
 - Front thigh (R & L)
 - Sternum
 - Under surface of foot (R & L)
 - Calibration in sitting

IDEEA® Trial

Participants:
- Age 8 - 25 years
- 30 control subjects (mean 14.5 yrs)
- 25 subjects with CP (mean 14.1 yrs)
- 16 subjects GMFCS Level I/II
- 9 subjects GMFCS Level III
- Simultaneous collection of 3-DGA & IDEEA
- Accuracy of IDEEA in detecting functional activities
- Trialled IDEEA for day in community

Summary: IDEEA® gait parameters

- IDEEA® overestimated step / stride length & underestimated cadence (both groups)
- Velocity underestimated for controls
- Velocity overestimated in children with CP
- Greater errors in step and stride length estimation were found in children with CP
- GMFCS level was not significant influence
Summary: IDEEA® activity detection

- High accuracy for static activities
- Increased error in dynamic tasks for subjects with cerebral palsy
- Delay in detecting activities noted

IDEEA® - Practical Issues

- Difficulty with wires
 - Uncomfortable with splints
 - Sensors come off
 - Going to toilet
 - Seen by other people

- Not recommend for 1+ day use in paediatric population

StepWatch™

- Two dimensional accelerometer
 - Detects foot leaving the surface
 - Completely sealed
 - Worn with strap or ankle cuff
 - Continuously records steps/time interval
 - Up to two months duration

StepWatch™ Activity Monitor

- Mac/PC
- Pager size
- Dock

www.orthocareinnovations.com

StepWatch™

- Sensitivity
- Cadence
- Recording Time
- Excel

24 hour: Data Capture

- Continuous Data Collection
- Time Interval Adjustable
Outcomes

- Functional level
 - TDY/GMFCS levels for CP
- Activity Performance
 - StepWatch Activity Monitor
 - Accuracy to manual counts: 99.7%
 - Song et al. (2006) 96-97% walk-run
- Activity Scale for Kids (ASKp38)
 - Control Variable: Current Day Outlook
- Participants:
 - Youth with CP (n=81)
 - Mean age: 11.8 yrs
 - GMFCS
 - Level I: 31
 - Level II: 30
 - Level III: 20
 - TDY (n=30)
 - Mean age: 11.8 yrs
 - No difference age, race, gender, SES, parental education

Ambulatory Physical Activity Performance in Youth with Cerebral Palsy & Youth Developing Typically

Kristie Bjornson, PhD, PT
29th Annual Duncan Seminar
March, 28th 2008

Ambulatory Physical Activity Performance in Youth with Cerebral Palsy & Youth Developing Typically
Bjornson, Belza, Kartin, Logsdon, & McLaughlin, Physical Therapy 87(3), 2007

Participants:

- Youth with CP (n=81)
 - Mean age: 11.8 yrs
 - GMFCS
 - Level I: 31
 - Level II: 30
 - Level III: 20
- TDY (n=30)
 - Mean age: 11.8 yrs
 - No difference age, race, gender, SES, parental education
Case Study:

- Spastic Diplegia
- GMFCS Level II, 8 yr/o
- Twin gestation, 32 wk premie
- Cognition- WNL
- GMFM Scores:
 - Lying/rolling 90%
 - Sitting- 86%
 - Standing-66%
 - Walk/run/Jump 45%

Correlation of StepWatch to ASKp

<table>
<thead>
<tr>
<th>Activity Scale for Kids (ASKp-38)</th>
<th>Average Steps/day</th>
<th>% All Time Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASKp-38 summary score</td>
<td>.57</td>
<td>.55</td>
</tr>
<tr>
<td>ASKp-38 Personal Care</td>
<td>.38</td>
<td>.35</td>
</tr>
<tr>
<td>ASKp-38 Dressing</td>
<td>.52</td>
<td>.52</td>
</tr>
<tr>
<td>ASKp-38 Locomotion</td>
<td>.55</td>
<td>.54</td>
</tr>
<tr>
<td>ASKp-38 Standing</td>
<td>.44</td>
<td>.43</td>
</tr>
<tr>
<td>ASKp-38 Transfers</td>
<td>.50</td>
<td>.55</td>
</tr>
</tbody>
</table>

Case: Spastic Diplegia

- Self reported goals:
 - Play short stop on little league baseball team
 - Not look ‘funny’ getting on and off school bus
 - Continue walking
 - recently experienced decrease in walking distance out in community (i.e. mall/school)
Average steps/day: CP-GMFCS II

Walking intensity: CP-GMFCS II

Implications & ?’s
Activity Measurement for:
- Constraint Induced Movement Therapy ("forced use")
- Treadmill (partial weight-bearing) training
- Orthotic (DAFO) functional

Constraint Induced Movement Therapy
- Based on behavioral research on primates post rhizotomy (Taub, 1980)
- Fundamental Principles
 - Constrain non-involved limb (casting, binding, sling/removable splint)
 - Mass practice activity with involved limb

- Found significant treatment effect in a single non-randomized trial
- Positive trend favoring CIMT/forced use
- Level of evidence for effectiveness/efficacy inconclusive
- Future Research Focus:
 - Uniform outcome measures
 - Adequately powered
- ?? Upper extremity activity in daily life?

Body Weight-Supported Treadmill Training (BWSTT)
- Increased walking velocity & EE (Provost et al 2007)
- Improve stride length, decrease double limb support (Cherng et al, 2006, Begnoche 2007)
- Improve standing, walk/run/jump skills –GMFM (Cherng 2007, Begnoche 2007)
- Increased cortical activation during ankle dorsiflexion (Phillips, 2007)
- Clinical matched pairs trial-improved walking speed (Dodd, 2007)
- What about impact on daily walking activity and participation?
Effect of Dynamic Ankle Foot Orthoses (DAFOs) on Function in Children with Cerebral Palsy

Bjornson KF, Schmale G, Adamczyk-Foster A, McLaughlin, JF.
JPO 28(6), 773-776, 2006

Methods/Sample:
- Cross-over design
- DAFO- Cascade Orthotics (www. DAFO.com)
- N = 23 children
- Average age of 4.3 years (1.9-7.3),
- 52% male,
- primarily Caucasian (70%),
- GMFCS
 - I = 6,
 - II = 3
 - III =14
- OUTCOME- GMFM scores

Conclusions:
- Positive short term effect in young ambulatory youth with CP
- Independent walkers appear to benefit more
 - Standing
 - Walk/run/jump
- Average leg length was positive association Total GMFM
- Does NOT confirm long term influence on motor skill acquisition
- Effect of DAFO on physical activity in daily life?

Physical Activity:

"Some is better than none and more is better than some"

USDDHS, 1996
Pate et al, 1995

In order to know if... children/youth are doing 'some or more'??
-Will need direct measures of physical activity within the context of their daily lives
Welk, 2002
QUESTIONS?